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Abstract 11. Ground Rules 

A preliminary analysis of multi-mission capabil- 
i t y  is  made fo r  a so la r -e lec t r ic  spacecraft .  
spacecraft has a 10 kilowatt, 345 kilogram proGul- 
sion system and uses the  same thrustor spec i f ic  i m -  
pulse fo r  a l l  missions. A common launch vehicle 
(Atlas-Centaur) is  used t o  start the spacecraft on 
a high energy Earth departure path fo r  flyby and 
e l l i p t i c  capture missions t o  Jupiter,  Saturn, 
Uranus, and Neptune. The e l ec t r i c  propulsion tra- 
jec tor ies  a r e  calculated with optimal control of 
th rus t  vector direction but t h rus t  magnitude i s  
changed t o  account fo r  so la r  c e l l  power var ia t ion  
with distance from the Sun. 
is l imited t o  800 days or l e s s .  
for a l l  planets beyond Jupiter,  high t rave l  angle 
t r a j ec to r i e s  of more than one revolution about the  
Sun a r e  necessary fo r  payloads i n  excess of 200 
kilograms. However, missions t o  Jupi te r  can use 
d i r ec t  t r a j ec to r i e s  with propulsion times as short  
as 400 days. 

The I '  

Total propulsion time 
Results show that, 

I. Introduction 

Studies of small e lec t r i c  propulsion probe space- 
craf o r  exploration of the  so la r  system date f a r  
back? lf and, over the years, have been pursued by 
many authors with many d i f f e re  t m thods of ap- 
proach. Much recent i n t e re s t  Pz-'f has been given 
t o  t h e  concept of a so la r -e lec t r ic  propulsion (SE?) 
spacecraft ,  whose primary parer source is  a la rge  
lightweight array of solar-photovoltaic c e l l s .  
Continued progress i n  the  devel 
weight solar c e l l  power systerasTg-12) and e f i c i e  t, 
lightweight, long l i f e  ion thrus tor  s y ~ t e m s f ~ ~ - ~ ~ T  
could lead t o  the  first useful mission application 
of e l e c t r i c  propulsion i n  small interplanetary 
spacecraft .  

ment of l i gh t -  

The author has recently completed an extensive 
in-house analysis of SEP missions t o  the  Jovian 
planets--Jupiter,  Saturn, Ur.anus, and Neptune. The 
purpose of t he  generalized study was  t o  ident i fy the  
bes t  t r a j ec to r i e s  and propulsion system design pa- 
rameters fo r  an SEP spacecraft based on t h e  Atlas- 
Centaur launch vehicle. The present paper i s  based 
on an observation of the  previous general studythat 
a one-design so lar -e lec t r ic  propulsion system could 
de l iver  s a t i s f ac to ry  payloads over a wide var ie ty  
of missions. 

The purpose of t h i s  paper is  t o  present an eval- 
uation of t he  multi-mission capabi l i tyof the  Atlas- 
Centaur-SEP combination with a fixed design elec- 
t r i c  propulsion system. 
a 10 kilowatt  ion thrustor array operating a t  a 
spec i f i c  impulse of 4500 seconds. Payload capa- 
b i l i t y  of t he  system is evaluated fo r  flyby and 
capture missions t o  all four Jovian planets.  

The propulsion system has 

The f ive  pr inc ipa l  ground ru l e s  concerning the 
mission and vehicle parameters assumed throughout 
t h i s  paper a re :  

(1) Atlas-Centaur launch and in jec t ion  a t  185 
kilometers (100 naut ica l  miles) a l t i t u d e  t o  place 
the  SEP spacecraft on a high energy Earth departure 
path a t  the  start of each mission. 

( 2 )  The so lar  c e l l  power system delivers 10 k i lo-  
watts ( a t  1 AU) t o  an ion thrus tor  a r ray  through a 
power conditioning and regulation system of 90 per- 
cent efficiency. 

with an overall  th rus tor  efficiency of 70  pe rcen t . e3 )  
(3)  Ion thrus tor  spec i f ic  impulse is  4500 secon 

(4) Total e l ec t r i c  propulsion system mass, in- 
cluding so lar  panels, power regulation, and thrus tors  
i s  fixed a t  345 kilograms. 

(5) Maximum e lec t r i c  prspulsion time i s  800 days, 
regardless of the  necessary t r i p  times t o  the  planets.  

Current e l ec t r i c  propulsion system l i fe t ime tar- 
ge ts  a r e  often quoted as 10,000 hours or  about 400 
days. 
times of several years. 
that, fo r  many missions, a 400 day m a x i m u m  propul- 
sion time puts severe l i m i t s  on t ra jec tory  selection 
and payload capabili ty fo r  the  SEP spacecraft. This 
paper has therefore used an upper l i m i t  of GOO days 
or about 20,000 hours. Thrust l i fe t ime improvements 
or propulsion system designs with redundant spares 
may be needed t o  allow 800 days of propulsion. 

Yet most outer planet missions w i l l  have t r i p  
Later discussion will show 

The par t icu lar  choice of power and spec i f ic  i m -  
pulse for  t h e  e l ec t r i c  propulsion system w a s  made 
because the generalized study showed them t o  be the  
best  overa l l  combination fo r  the  s t a t ed  propulsion 
time l i m i t  and the  Atlas-Centaur launch vehicle. 
These principal ground ru les  and other subsidiary 
constraints used i n  the SEP mission analysis for  this 
paper axe discussed i n  more d e t a i l  i n  t he  following 
sections. 

111. Trajectories 

All mission t r a j ec to r i e s  i n  t h i s  analysis essen- 
t i a l l y  start a t  Earth's surface. As shown i n  f i g -  
ure 1, the Atlas-Centaur launch vehicle leaves the  
surface and a t  185 kilometers a l t i t ude  in jec ts  the 
SEP spacecraft a t  a velocity equal t o  or greater 
than escape velocity of 11,020 meters per second. 
The spacecraft then coasts t o  the sphere of in f lu-  
ence on a hyperbolic conic section. A t  t he  sphere 
of influence patch point the  spacecraft velocity 
r e l a t ive  t o  Earth, V,, is  vec tor ia l ly  added t o  
Earth's heliocentric velocity,  Ve, t o  determine the  
i n i t i a l  heliocentric velocity, Vo, of the  spacecraft 
It i s  a t  t h i s  point t h a t  the  e l ec t r i c  propulsion 
phase is  assumed t o  start. For mission t r a j ec to r i e s  
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with optimum t h r u s t  vector control i n  the  heliocen- 
t r i c  phase, the  optimum orientat ion of Vs is  i n  
the i rec t 'on  of the  i n i t i a l  e l e c t r i c  th rus t  vec- 
tor.74, 15j 

The hel iocentr ic  t r a j e c t o r i e s  a r e  calculated i n  
a simplified,  two-dimensional model of the so la r  
system. 
have been assumed for  all the  planets with the  im-  
portant constants given i n  Table 1. 
hel iocentr ic  t ra jec tory  calculations are  made with 
a calculus of var ia t ions t ra jec tory  code which is  
equipped with a simulation of the parer o u t y t  pro- 
f i l e  of a typ ica l  so la r  c e l l  panel as a fmc-L.on of 
distance from the Sun. The power curve u s e d i n t h i s  
study, shown i n  F e 2, comes d i rec t ly  from a 

of solar panel design character is t ics .  

Circular coplanar orb i t s  about the Sun 

The l o w  th rus t  

previous analysis tr which assumed an a rb i t ra ry  s e t  

The ion thrustor  array is  assumed t o  operate 
with var iable  propellant flow r a t e  (var iable  t o t a l  
th rus t )  t o  conform t o  the solar power prof i le ,  but 
spec i f ic  impulse is kept a t  the ground r u l e  value 
of 4500 seconds. In  actual  pract ice  t h i s  form of 
thrustor  operation could be closely approximated by 
a multi- thrustor array with periodic shut-down of 
individual uni ts .  

The optimum t ra jec tory  code is  incorporated i n  a 
multi-variable payload-optimization code which al- 
lows the  trade-off of mission t ra jec tory  and system 
design parameters such as spacecraft i n i t i a l  mass 
with in jec t ion  veloci ty  a t  185 kilometers. For the 
Atlas-Centaur launch vehicle assumed i n  t h i s  study, 
a port ion of the SEP spacecraft-init ial-mass curve 
i s  shown i n  Figure 3. Inject ion ve loc i t ies  €or a l l  
the  SEP missions discussed i n  this paper a re  never 
l e s s  than escape velocity,  nor a r e  they greater  
than 11,700 meters per second for  most cases of in -  
t e r e s t .  

On a r r i v a l  inside the sphere of influence of the 
t a r g e t  planet,  t h e  spacecraft is  on a hyperbolic 
flyby path. 
small s torab le  chemical braking rocket is f i r e d  a t  
per iapsis  of the encounter m e r b o l a .  
study, the objective of the  braking rocket system 
is t o  place the payload i n  an e l l i p t i c  paxking or-  
b i t  with a per iapsis  of two planet r a d i i  and 
apoapsis of 200 planet radii. The choice of a 
2x200 capture e l l i p s e  a t  each planet is completely 
a r b i t r a r y  s ince the  s c i e n t i f i c  purpose of each 
par t icu lar  mission would determine the best  capture 
o r b i t .  For the same t r i p  time and planet,  a cap- 
t u r e  payload is always l e s s  than the  flyby case due 
t o  the  propel lant  and hardware requirements of the 
braking rocket system. However, the  capture mis- 
s ion  allows repeated close encounters with the 
planet  surface t o  gather more s c i e n t i f i c  data. 
Periods of 2x200 e l l i p t i c  capture orb i t s  a re  shown 
i n  Table 1 for  each of the Jovian planets.  

Trajectory s tudies  t o  improve the payload capa- 

The capture missions assume that a 

In t h i s  

I 

b i l i t y  of the  SEP spacecraft  for Jovian planet mis- 
s ions revealed a special  c lass  of optimal hel io-  
cent r ic  t r a j e c t o r y  which is  uniquely beneficial  t o  
s o l a r  c e l l  powered spacecraft .  This t ra jec tory  
c l a s s  i s  characterized by a la rge  elapsed polar 
angle of about one extra  revolution about the Sun 
Over t h e  elapsed angle of the  usual d i r e c t  low- 
t h r  s t  t a j e i t o r y  6 o m  Earth t o  the ta rge t  plan- 
et.Y6, 7T 

Typical examples of the  d i rec t  and high t r a v e l  
angle type of optimal SEP t r a j e c t o r i e s  a re  shown i n  
Figure 4 with radius p lo t ted  versus t r a v e l  angle. 
The two types of t r a j e c t o r i e s  sham i n  t h e  f igure 
a r e  taken from a 1000-day t r i p  time Jupi te r  mission 
and a 2W-day  Saturn mission but  a re  typ ica l  of the 
radius- t ravel  angle h is tory  of each t ra jec tory  type 
t o  all four Jovian planets.  
t r a j e c t o r i e s  usually take l e s s  than one revolution 
about the  Sun. The high t r a v e l  angle c lass  of tra- 
jector ies ,  labeled type B i n  Figure 4, all require 
about 1.5 revolutions about the Sun. For a given 
mission, type B t r a j e c t o r i e s  require a higher effec- 
t i v e  value of low-thrust AV or  t o t a l  propulsive 
e f f o r t  than type A t ra jec tor ies .  If a constant 
power supply were avai lable  (e.g., nuclear-electr ic) ,  
type B t r a j e c t o r i e s  would be highly nonoptimum. 
typ ica l  so la r  panels experience a severe drop i n  
power output as they move away from the Sun. The 
B type t ra jec tor ies ,  by staying closer  t o  the Sun 
over a la rge  f rac t ion  of the t r i p ,  derive more use- 
f u l  solar energy f o r  propulsion which can of fse t  
t h e i r  higher AV requirements. The extra  time 
spent near the Sun on the i n i t i a l  loop of a type B 
t ra jec tory  does, however, c a l l  for  longer propulsion 
times than a re  needed i n  type A cases. It can be 
seen i n  Figure 4 t h a t ,  for  the  same 1000-day t r i p  t o  
Jupiter,  the  B t ra jec tory  takes almost twice the  
time t o  reach 3 AU as the  d i rec t  t r i p .  
w i l l  show that, i f  up t o  800 days of propulsion can 
be tolerated,  type B t r a j e c t o r i e s  allow payloads for  
SET spacecraft  that ,  for  most missions, a re  much 
greater  than missions using d i rec t  t ra jec tor ies .  

The d i rec t  ( type A) 

But 

Later f igures  

Another t ra jec tory  c lass  of 2.5 revolutions about 

The propulsion time required t o  complete 
the Sun also ex is t s  but is  not included i n  this 
study. 
two loops about the Sun is  f a r  beyond the  800 day 
ground r u l e  of this paper. Also, the  payload advan- 
tage of the 2.5 revolution type over most type B 
cases is  too small t o  of fse t  t h e i r  longer propulsion 
time requirement. 

I V .  Payload 

The payload calculated i n  t h i s  analysis might be 
more apt ly  termed a gross payload since it must be 
la rge  enough t o  include not only s c i e n t i f i c  ins t ru-  
mentation but a lso many other subsystems such as 
navigation, telemetry, and en ironmental control 
equipment. An ear ly study(l6J of payload require- 
ments f o r  a Jupi te r  mission and a l s o  the  Mariner 
spacecraft  experience show that a gross payload of 
200 kilograms would be suf f ic ien t  for  l imited- 
objective missions having 20 t o  30 ki logram of s c i -  
e n t i f i c  instruments. 

The expression for  gross payload % of the  SEP 
spacecraft  is : 

%'4 - mst - $6 - $ - mt -?E 

I n  other words, the i n i t i a l  mass of the space- 
c r a f t  9 is reduced by the individual masses of 
the s t ruc ture  st, propulsion system mps, ion pro- 

as payload. The brak- 
ing rocket system is, of course, not present i n  f l y -  
by missions. Structure is assumed t o  be 10 percent 
of the i n i t i a l  mass of the spacecraft .  Tankage and 
ion propellant feed system is assumed t o  be 10 per- 
cent of the  ion propellant mss 

and braking rocket system 

pe l lan t  mass requirement var ies  
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a t 

mission but i s  often i n  the neighborhood of 30 per- 
cent of the t o t a l  mass. Similarly,  the  mass r e -  
quirement for  the braking rocket system depends on 
the amount of AV required t o  capture the  space- 
c r a f t  i n  the  2x200 e l l i p t i c a l  parking o r b i t  a t  each 
planet. The braking rocket propellant is assumed 
t o  have a spec i f ic  impulse of 300 seconds and the 
hardware requirements a re  assumed t o  be 20 percent 
of the  propellant mass needed f o r  the braking ma- 
neuver. 

The e l e c t r i c  propulsion system  mas^ is f ixed a t  
345 kilograms and consis ts  of three majcr parts--  
s o l a r  c e l l  panels, power regulation equipment, and 
ion thrustors .  This study assumes a 10 kilowattpow- 
er  supply t o  the ion thrustors  through a power con- 
di t ioning system of 90 percent efficiency. (3,11,12) 
There must ac tua l ly  be 10/.9 or  ll.l kilowatts of 
output power from the so la r  pan Is. A t  22.7 kilo- 
grams (50 pounds) per kilowatt ,f2J8) the solar  c e l l  
panels and deployment system mass is then 253 k i lo-  
grams. The remaining 92 kilograms (-200 pounds) is 
is assumed t o  be suf f ic ien t  t o  account for  the  10 
kilowatt  th rus tor  array and i t s  ass ciated o e r  
condit ioning and regulat  ion system. ?2 3 11 , ?2?' 

V. Flyby Missions 

Gross payloads for  SEP flyby missions t o  a l l  
four Jovian planets a r e  sham i n  Figure 5 as  a 
function of t r i p  time. The Full 800 days of al- 
lowed propulsion time are  used for  all the  type B 
mission t r a j e c t o r i e s  t o  each planet and also for  
the type A Saturn flyby mission. 
Jupi te r  f lyby t r a j e c t o r i e s  have, however, been held 
t o  a maximum propulsion time of 400 days. 
shown i n  a l a t e r  f igure that a 400-da~ l i m i t  on 
Jupi te r  type A t r a j e c t o r i e s  has very l i t t l e  e f fec t  
on gross  payload. 

The type A 

It is 

It is  c lear  i n  Figure 5 t h a t  the only prac t ica l  
mission for  type A t r a j e c t o r i e s  is the Jupi te r  f l y -  
by a t  t r i p  times shorter  than 900 days. The type A 
Saturn flyby data i s  included i n  the  f igure only t o  
show the  rap id  fa l l -of f  of payload i f  d i rec t  t r i p s  
a re  used f o r  SEP missions beyond Jupi ter .  

The drop i n  payload capabi l i ty  for  Uranus and 
Neptune flyby missions might r a i s e  a question as t o  
whether the s t r i c t  adherance t o  the ground ru les  of 
this paper i s  too damtsging t o  SEP performance f o r  
these missions. For t h i s  reason, the two s o l i d  
square data points a re  shown near the Neptunecurve. 
These points  represent the flyby payloads that 
could be delivered t o  Neptune i f  spacecraft  power, 
thrustor  spec i f ic  impulse and propulsion time are  
completely optimized. 
is 50 t o  60 kilograms over the  Neptune t r i p  time 
range from 4000 t o  7000 days. It w i l l  be shown i n  
a l a t e r  f igure  that most of the gross payload pen- 
a l t y  i s  due t o  the  800-day propulsion time l imita-  

The possible gain i n  payload 

(. t ion.  

V I .  Capture Missions 

Figure 6 shows the  capture mission payloads of 
the SEP spacecraf t  for  a 2x200 e l l i p t i c a l  capture 
o r b i t  about each planet.  
SPLIT is given f o r  each planet  t o  designate that 
the payload package, with attached braking rocket, 
is f i rs t  separated from t h e  main spacecraft before 
the capture braking maneuver a t  2 planet r a d i i .  

a 
A data curve labeled 

The reason for  the payload separation i s  t h a t  
chemical propulsion braking of the whole a r r i v a l  
mass of the  SEP spacecraft  resu l t s  i n  gross payloads 
of 50 kilograms or l e s s  a t  a l l  p lanets  except Jupi- 
t e r .  However, it is probably advisable t o  capture 
the whole (curve labeled WHOLE) spacecraft  a t  Jupi- 
t e r .  The payload penalty of about 100 kilograms is 
compensated by an expected avai lable  power output of 
about 700 watts from the solar array t o  power the 
s c i e n t i f i c  payload while i n  o r b i t .  In contrast ,  the  
SPLIT payload must be penalized by the  weight of a 
separate power supply. It is  for  t h i s  reason tha t ,  
for  Jupi ter ,  a capture payload range between WHOLE 
and SPLIT cases is  shown over the Jupi te r  t r i p  time 
range. 

The SPLIT method i s  the only log ica l  capture mode 
for  Saturn, Uranus, and Neptune. For these planets,  
WHOLE vehicle braking payloads a re  l e s s  than 50 k i l o -  
grams and power output of the 10 kilowatt  array is  
uncertain but def in i te ly  l e s s  than 2 W  watts.  On 
the  other hand, a 200 watt radi.oisotope thermal gen- 
erator  could be carr ied as par t  of the  SPLIT payload 
and s t i l l  leave mass for  other purposes. Even then, 
SEP payload is very low for  Uranus and Neptune cap- 
tures .  Larger payload margins could be obtained, 
but a t  the expense of larger  launch vehicles and 
correspondingly larger  so la r -e lec t r ic  propulsion 
systems. 

V I I .  Propulsion Time 

Figure 7 is  given here t o  show t h e  e f fec t  of pro- 
pulsion time on gross payload for  the  1000-day Jupi- 
t e r  and 5000-day Neptune flyby missions. The previ-  
ous payload f igures  shared t h a t  t r i p  times t o  the 
outer planets a re  very long. Many important compo- 
nents of the  SEP spacecraft  w i l l  need a high l i f e  
expectancy i f  the probe mission i s  t o  succeed. A 
major requirement is a long l i f e  ion thrustor  sys- 
tem. However, due t o  the  rapid f a l l  off  of so la r  
power, most of the propulsion work of the ion thrus-  
t o r s  is complete by the time the spacecraft  reaches 
3 AU. It i s  for  t h i s  reason t h a t  an upper l i m i t  on 
propulsion time can be s e t  at  800 days. For the  
1000-day Jupi te r  flyby, curves a re  sham i n  Figure 7 
f o r  both the  A and B type mission t ra jec tor ies .  A 
propulsion time of 800 days i s  optimum for  the  B 
type Jupi te r  case, and i f  necessary, can be cut  t o  
as low as 550 days before the payload is  the same 
as the A type Jupi ter  flyby. I f  very short  propul- 
s ion times are  required, type A mission t ra jec tor ies  
a r e  the bes t  choice for  t r i p  times beyond 900 days. 
For all type A Jupi te r  missions, a 400-day propul- 
s ion  time l i m i t  has l i t t l e  or no e f fec t  on gross 
payload. 

The 5000-day Neptune flyby curve is  also sham i n  
Figure 7 because it is an extreme e x a q l e  o f t h e  pay- 
load reduction caused by an 800 day l i m i t  on propul- 
s ion  time. The payload l o s t  is about 60 kilograms 
or 2 0  percent of the maximum value a t  1400 days of 
propulsion time. Similar curves f o r  Uranus would 
show a payload loss of no more than 50 kilograms 
and, for Saturn, no more than 30 kilograms. 

It should be noted that the propulsion time l i m i t s  
discussed i n  t h i s  paper a re  not necessarily the r e -  
quired operating lifetimes of t h e  ion thrustors .  Fig- 
ure 8 i s  given t o  show the propulsion power variation 
along typ ica l  type A and B t r a j e c t o r i e s  for  the SEP 
missions discussed i n  t h i s  paper. The type A is a 
1000-day t r i p  t o  Jupi ter  with a 400-day propulsion 

' t imel imi t ,  and the type B case is a 2000-day Saturn 

- 
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t r i p  with an 800-day propulsion time. 
r e s u l t  from the  combined ef fec ts  of so la r  power 
var ia t ion  with radius and radius with time along 
each t ra jec tory  type. 
t r i c  spacecraft, the  power var ia t ion  means that fo r  
most of the  propulsion time, the  required number of 
operating thrustors is  l e s s  than the  number on 
board. The shape of e i ther  t he  A o r  B type power 
h is tory  could be used t o  advantage i n  achieving, 
w i t h  very few spares, a high r e l i a b i l i t y  th rus tor  
system beyond the  expected l i f e  of individual 
thrustors.  

Such curves 

For a multi-thrustor elec- 

Figure 9 shows the  mass breakdown of SEP space- 
c r a f t  for  th ree  typ ica l  Jupi te r  missions taken from 
the data of t h i s  study. 
flyby examples contrast  the  type A, 400-day propul- 
s ion  time, and type B, 800-day propulsion time 
cases. The major difference between the type A and 
type B examples is  i n  the  ion propellant section. 
The type A d i r ec t  mission, t o  compensate for  the  
rapid so l a r  power decrease, requires an in jec t ion  
velocity of nearly 11,600 meters per second and 
therefore has a re l a t ive ly  small i n i t i a l  mass of 
805 kilograms. 
velocity,  the  ion propellant requirement of t h i s  
spacecraft  is  more than 200 kilograms l e s s  than 
needed fo r  the  SEP mission using a type B t ra jec to-  
ry. The type B Jupi te r  flyby requires an in jec t ion  
ve loc i ty  of only about 11,200 meters per second and 
therefore starts the  mission with about 275 k i lo-  
grams more t o t a l  mass than its type A counterpart. 
Additional s t ruc ture ,  propellant, and tankage re -  
quirements t o t a l  about 235 kilograms more than the  
type A spacecraft  and therefore reduce the  payload 
difference t o  only 40 kilograms. 

The two 1000-day Jupiter 

But, a lso due t o  the  high in jec t ion  

The bottom schematic i n  figure 9 represents an 
SEP spacecraft  breakdown for a 1400-aaJr t r i p  time 
Jupiter capture mission. 
and s t ruc ture  requirements a re  similar t o  the  1OOO- 
day type B flyby example. The SEP 1400-day mission, 
however, requires an in jec t ion  velocity only 
s l i g h t l y  over escape and therefore has a high i n i -  
tial mass of 1225 kilograms. Gross payload i n  less, 
however, than the  1ooO-day flyby mission due t o  t h e  
163 kilogram braking rocket system needed t o  cap- 
t u r e  the  whole spacecraft i n  the  2x200 e l l i p t i c  or- 
b i t .  

The propellant, tankage, 

V I I I .  Concluding Remarks 

This paper has attempted t o  show that a multi- 
mission interplanetary probe could be based on a 
s ingle  launch vehicle ( the  f a i r l y  small A t l a s -  
Centaur) and a fixed-design so lar -e lec t r ic  propul- 
s ion  system. A t  l e a s t  200 kilograms of gross pay- 
load can be delivered on most flyby and capture 
missions t o  all four J w i a n  planets.  
payload l eve l s  require up t o  800 daJrs of propulsion 
time and very long t r i p  times. 
range from 2 t o  4 years f o r  Jupiter missions up t o  
12 t o  18  years far the  Uranus and Neptune missions. 
Such long t r i p  times a re  the  most detrimental as- 
pect i n  the  consideration of outer planet probe 
missions using the  launch vehicle and SF2 system 
performance assumed fo r  t h i s  paper. Larger pay- 
loads and shor t e r  f l i g h t  times would require a 
higher performance launch vehicle, much l igh te r  
components i n  the  e l e c t r i c  propulsion system, and 
t h e  possible use of Jupiter swingby t r a j ec to r i e s .  

Reasonable 

The t r i p  t i m e s  
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TABLE I - ASSUMED PHYSICAL CONSTANTS OF !rHFl PLANETS 

SUn Earth Jupiter Saturn Uranus Neptune 

Gravitational constant, 
cI, m3~s2 1.3245xl$O 3.986aUd4 1.3003n&7 3.0745><1G6 5.946Bd5 7.0566><1d5 

Heliocentric orbit 
radiu6, meters -- 1.495Wdl 7.778xldl 14.26UUdl 28.69uCl&l 44.956xld' 

Heliocentric orbit 
velocity, m/s -- 29765 13050 9640 6780 5470 

Planet radius, meters -- 6.3712X106 6.9892X1O7 5.7532XLO7 2.3701>(107 2.1535)(107 

Sphere of influence 
radius, number of 
planet rsdii -- 150 690 950 2180 3970 

Velocity of circular 
orbit at 2 planet 
radii, m/s -- 

Period of 2x200 capture 
ellipse &ys -- 

5593 30500 18350 

-- 120 164 

ll.200 12 800 

110 00 

I 
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Figure 1. - Spacecraft launch and earth departure. 
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Figure  2. - Power var iat ion of solar ce l l  panel. 
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Figure 3. - Electric spacecraft in i t ia l  mass. Atlas-Centaur 
launch vehicle at 185 kilometers. 
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Figure 4. - Optimum trajector ies for  solar-electric pro- 
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Figure 5. - Solar-electric propuls ion flyby payloads for Atlas- 
Centaur launch vehicle. Power, 10 kilowatts; I,, 4500 
seconds; maximum propulsion time, 800 days. 
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Figure 6. - Solar-electric propulsion capture payloads for t h e  
Atlas-Centaur l aunch  vehicle. Power, 10 kilowatts; Is, 
4500 seconds; maximum propulsion time, 800 days; capture 
ellipse, 2x200. 
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Figure 7. - Effect of propulsion t ime  for  t h e  solar-electric pro- 
pulsion Atlas-Centaur l aunch  vehicle. Power, 10 kilowatts; 
Is, 4500 seconds. 
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Figure 8. - Typical propulsion power h is to r ies  for  type A and 
type B trajector ies.  

Jupiter flyby. Tr ip time, 1000 days; pro- I puls ion time, 400 days. 
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Figure 9. - Total mass and component mass typical SEP spacecraft. 
Power, 10 kilowatts; Is, 4500 seconds. Atlas-Centaur launch vehicle. 
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